Phase Separation in Highly Charged Confined Ionic Solutions
نویسنده
چکیده
We study phase separation in ionic solutions confined by solid objects carrying surface charges. Within the framework of Density Functional Theory, the Helmholtz free energy of the ionic solution is minimized under canonical constraints on the ionic densities fixing their mean value while ensuring global electroneutrality. The free energy splits into a bulk and an electrostatic contribution. The bulk contribution, which includes non-ideal terms accounting for long-range electrostatic and short-range steric correlations between ions, is evaluated with the Mean Spherical Approximation and the Local Density Approximation. The Primitive Model is considered with counterand co-ions having the same diameter. The electrostatic contribution treats the interactions between the ions and the solid object at the mean-field level through the solution of a suitable Poisson problem. The numerical methodology hinges on a regularization of the free energy and a finite element discretization of the Euler-Lagrange conditions of the constrained minimization problem on adaptively refined meshes as the regularization parameter approaches zero. Results are presented for the one-dimensional double-layer configuration and a multi-dimensional periodic network of charged circular inclusions. The main results are the formation of a condensed phase near the charge solid surface screening most of the surface charge, the stark contrast with predictions using the Poisson–Boltzmann theory, and the fact that co-ion densities are higher in the condensed phase as well. An extension of the methodology to the case where ions do not carry opposite charges is also presented.
منابع مشابه
Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.
Through molecular dynamics simulations considering thermal vibration of surface atoms, ionic behaviors in concentrated NaCl solutions confined between discretely charged silicon surfaces have been investigated. The electric double layer structure was found to be sensitive to the density and distribution of surface charges. Due to the discreteness of the surface charge, a slight charge inversion...
متن کاملCharged bilayer membranes in asymmetric ionic solutions: phase diagrams and critical behavior.
We consider the phase separation in an asymmetrically charged lipid bilayer membrane consisting of neutral and negatively charged lipids that are in contact with in and out ionic solutions having different ionic strengths. The two asymmetric leaflets are coupled through electrostatic interactions. Based on a free-energy approach, the critical point and phase diagrams are calculated for differen...
متن کاملExtraction-Separation of Eu(III)/Th(IV) Ions with a Phosphorylated Ligand in an Ionic Liquid
Extraction-separation of Eu(III) and Th(IV) ions from nitrate media into the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate by a phosphorylated salen extractant, bis(chlorophosphoryle)decahydro-2,4-di(2-hydroxyphenyl)benzo[d][1,3,6]oxadiazepine (DPO), is investigated. It is found that Eu(III) ions are extracted via a solvation mechanism, and the extraction of Th(IV) i...
متن کاملNumerical study of density functional theory with mean spherical approximation for ionic condensation in highly charged confined electrolytes.
We investigate numerically a density functional theory (DFT) for strongly confined ionic solutions in the canonical ensemble by comparing predictions of ionic concentration profiles and pressure for the double-layer configuration to those obtained with Monte Carlo (MC) simulations and the simpler Poisson-Boltzmann (PB) approach. The DFT consists of a bulk (ion-ion) and an ion-solid part. The bu...
متن کاملA New Model for the Electrical Double Layer Interaction between Two Surfaces in Aqueous Solutions
A new theoretical model is developed to evaluate the total potential energy of interaction between two charged flat plates in aqueous solutions. Instead of using the Boltzmann distribution to predict the ionic concentrations of counterion and coion, which is not correct for small confined spaces, this modified model determines the ionic concentrations of counterion and coion based on the Poisso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013